Dopamine drives Drosophila sechellia adaptation to its toxic host

نویسندگان

  • Sofía Lavista-Llanos
  • Aleš Svatoš
  • Marco Kai
  • Thomas Riemensperger
  • Serge Birman
  • Marcus C Stensmyr
  • Bill S Hansson
چکیده

Many insect species are host-obligate specialists. The evolutionary mechanism driving the adaptation of a species to a toxic host is, however, intriguing. We analyzed the tight association of Drosophila sechellia to its sole host, the fruit of Morinda citrifolia, which is toxic to other members of the melanogaster species group. Molecular polymorphisms in the dopamine regulatory protein Catsup cause infertility in D. sechellia due to maternal arrest of oogenesis. In its natural host, the fruit compensates for the impaired maternal dopamine metabolism with the precursor l-DOPA, resuming oogenesis and stimulating egg production. l-DOPA present in morinda additionally increases the size of D. sechellia eggs, what in turn enhances early fitness. We argue that the need of l-DOPA for successful reproduction has driven D. sechellia to become an M. citrifolia obligate specialist. This study illustrates how an insect's dopaminergic system can sustain ecological adaptations by modulating ontogenesis and development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Genetics of Resistance to Morinda Fruit Toxin During the Postembryonic Stages in Drosophila sechellia

Although a great deal has been learned regarding the genetic changes that give rise to adaptation in bacteria and yeast, an understanding of how new complex traits arise in multicellular organisms is far less complete. Many phytophagous insect species are ecological specialists that have adapted to utilize a single host plant. Drosophila sechellia is a specialist that utilizes the ripe fruit of...

متن کامل

Expression Divergence of Chemosensory Genes between Drosophila sechellia and Its Sibling Species and Its Implications for Host Shift.

Drosophila sechellia relies exclusively on the fruits of Morinda citrifolia, which are toxic to most insects, including its sibling species Drosophila melanogaster and Drosophila simulans. Although several odorant binding protein (Obp) genes and olfactory receptor (Or) genes have been suggested to be associated with the D. sechellia host shift, a broad view of how chemosensory genes have contri...

متن کامل

Genetic changes accompanying the evolution of host specialization in Drosophila sechellia.

Changes in host specialization contribute to the diversification of phytophagous insects. When shifting to a new host, insects evolve new physiological, morphological, and behavioral adaptations. Our understanding of the genetic changes responsible for these adaptations is limited. For instance, we do not know how often host shifts involve gain-of-function vs. loss-of-function alleles. Recent w...

متن کامل

Evolutionary Genetics: You Are What You Evolve to Eat

The evolution of host specialization can potentially limit future evolutionary opportunities. A new study now shows how Drosophila sechellia, specialized on the toxic Morinda fruit, has evolved new nutritional needs influencing its reproduction.

متن کامل

The genetic basis of Drosophila sechellia's resistance to a host plant toxin.

Unlike its close relatives, Drosophila sechellia is resistant to the toxic effects of the fruit of its host plant, Morinda citrifolia. Using 15 genetic markers, I analyze the genetic basis of D. sechellia's resistance to this fruit's primary toxin, octanoic acid. D. sechellia's resistance is dominant in F1 hybrids between it and its sister species D. simulans. All chromosomes, except the Y and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014